
Task Coordination and Decomposition in Multi-Actor Planning Systems

A.W. ter Morsa,b, J.M. Valkb and C. Witteveena

a Faculty EEMCS, Delft University, P.O. Box 5031, NL-2600 GA, Delft
{a.w.termors, c.witteveen}@tudelft.nl

b Almende BV, Westerstraat 50, NL-3016 DJ, Rotterdam
{adriaan, jeroen}@almende.com

Abstract

We discuss a framework for coordinating self-interested agents that can be used to decompose a multi-agent
task based planning problem into independent subproblems. This problem decomposition can be achieved by a
simple protocol and allows the agents to solve their part of the problem without the need to interact with other
agents and in such a way that the resulting plans can be seamlessly integrated into a joint plan without the need
for revising individual plans. We illustrate the application of the framework to the logistic planning problems
used in the AIPS planning competition. After a thorough analysis of the problem we show how existing planners
can benefit from such a decomposition technique.

1. Introduction and motivation

In this paper we deal with methods to solve
multi-actor task-based planning problems such
as occurring in e.g. manufacturing, supply-chain
management and air traffic control. A common
characteristic of such planning problems is that
a set of autonomous planning agents, using their
individual tools and capabilities, must come up
with a joint solution to a problem consisting of a
set of interdependent tasks. Typically, none of the
agents is capable to solve all tasks and each agent
is assigned a (disjoint) subset of tasks to perform.
To complete its part of the job, each agent has to
come up with a plan to perform the tasks assigned
to it. These individual plans have to be integrated
to create an executable joint plan. In general, it
is assumed that the participating agents are self-
interested and non-cooperative.

At least three major subproblems can be distin-
guished in such a multi-actor planning problem:
a task allocation problem (which agent performs
which subtasks), an individual planning problem
for each of the agents involved (how to ensure
that the tasks allocated to me can be performed)

and a plan coordination problem (how to ensure
that the individual planning processes can be in-
tegrated such that a solution to the overall prob-
lem can be achieved).

In this paper we concentrate on the plan coor-
dination problem and we will restrict the discus-
sion of this plan coordination problem to multi-
agent systems where the agents are self-interested
and non-cooperative planners requiring complete
planning autonomy. That is, the actors do not
want to be interfered during their planning and do
not want to revise their plans afterwards. To se-
lect a suitable plan coordination method for these
planning problems, we will first briefly review the
multi-agent planning literature on plan coordina-
tion methods.

In the multi-agent planning literature, one can
distinguish three main approaches to plan coor-
dination. In the first approach (cf. [2,7,14]) coor-
dination between the agents is established after
the completion of the individual planning pro-
cesses. It is assumed that agents independently
work on their own part of the planning prob-
lem and achieve a solution for it. Then, in an
after-planning coordination phase, possible con-

flicts between independently generated individ-
ual plans are resolved and positive interactions
between them are exploited by exchanging and
revising parts of the individual plans.

In the second approach (cf. [3–5,12]) coordi-
nation and planning are treated as intertwined
processes where the agents continuously exchange
planning information to arrive at a joint solution.
From a coordination perspective, the main differ-
ence with the first approach is that positive (nega-
tive) interactions between partial individual plans
are exploited (resolved) before each of the agents
comes up with a completely developed plan. It
therefore should be considered as a coordination
during planning approach where the agents are
cooperative in the sense that they are willing to
exchange planning information with other agents
and change their current plans if necessary.

The third approach is to perform coordina-
tion prior to the planning process. In this pre-
planning coordination process some or all of the
dependencies between the agents are resolved
before any planning takes place1. The most in-
fluential pre-planning approaches in the literature
are social laws and cooperation protocols. Social
laws (cf. [15,16]) are general rules that govern
agent behavior; if a collection of agents abide by
these rules, then their behavior will be coordi-
nated without the need for any problem-specific
information exchange between the agents. In
many situations, however, coordination cannot
be achieved (or not efficiently) through general,
problem-independent rules alone. In such cases,
cooperation protocols ([9]) can be applied. Such
protocols require simple forms of problem-specific
information exchange before the agents can start
planning and they guarantee that if the agents
adhere to the protocol, then the individual plans
can easily be assembled into a joint plan for the
overall task.

Given these three main approaches, it might be
clear that the first two approaches are not suitable
for coordinating self-interested, non-cooperative
planners that require complete planning auton-
omy. In this paper we therefore concentrate on
pre-planning coordination methods that can be
used to implement cooperation protocols. As

1In the remainder of this paper we will focus on pre-
planning coordination in which all inter-agent dependen-
cies are coordinated prior to planning.

a consequence, before the agents start to plan,
there is a single coordination phase ensuring that
the agents can plan independently and concur-
rently and in such a way that they do not need
to revise their plan afterwards.

Elsewhere (see [10]), we have presented a com-
plete overview of such a task-based pre-planning
coordination method together with a complexity
analysis of the planning problems associated with
this approach. In this paper we will only give a
brief overview of this framework and then point
out how it can be applied to a well-known set of
logistic planning problems as used in the AIPS
2000 planning competition. Considering the lo-
gistic planning problem as a multi-agent planning
problem, we will show that the application of this
pre-planning coordination framework enables the
design of a very simple pre-planning coordination
method. This coordination enables a decomposi-
tion of the original planning problem into a set
of subproblems that can be solved by the agents
independently from the others, and in such a way
that the resulting plans (solutions to the subprob-
lems) can be simply joined to constitute a joint
plan for the total planning problem.2

Each subproblem to be solved by the individ-
ual agents constitutes a restriction of the original
logistic planning problem and cannot be solved
optimally (in reasonable time). Moreover we will
show that it is highly unlikely that there exist
a δ-approximation algorithm with δ < 1.2 for
such a subproblem. Then we show that, quite
surprisingly, the coordination method might be
used to obtain a polynomial distributed 1.25-
approximation algorithm for solving the complete
multi-actor logistic planning problem.

Finally, we present some results obtained by
applying our coordination approach to the logis-
tic benchmark problems used in the AIPS2000
planning competition, showing that also existing
single-agent planning methods can benefit from
this simple coordination method.

2. Coordination by Pre-Planning

We consider task-based planning problems
where a set T of tasks has to be solved by several

2Stated this way, the pre-planning coordination method
comes down to a generalization of classical problem de-
composition methods like, e.g. divide-and-conquer or par-
titioning.

autonomous agents, each having their own capa-
bilities and using their own (planning) tools. This
set T consists of elementary tasks where each el-
ementary task t, or simply task, is a unit of work
that can be performed by a single agent. These
elementary tasks are interrelated by a partially
ordered precedence relation ≺: a task t1 is said
to precede a task t1, denoted by t1 ≺ t2 if the
execution of t2 may not start until t1 has been
completed; this occurs if, for example, achiev-
ing t1 results in creating resources needed to per-
form t2. The tuple T = (T,≺) is called a com-
plex task. Examples of such complex tasks are
easy to find: manufacturing, airport planning
and supply-chain management can be considered
as consisting of (sets of) interrelated elementary
tasks.

Such a complex task T = (T ,≺) is given to
a set A = {A1, . . . An} of autonomous planning
agents. We assume that the tasks in T have
to be be assigned to the agents in A by some
task assignment f : T → A thereby inducing
a partitioning T = {T1, . . . , Tn} of T , where
Ti = {tj ∈ T | f(tj) = Ai} denotes the set
of tasks allocated to agent Ai. As a result of
this task assignment, Ai also inherits the prece-
dence constraints that apply to Ti, i.e., the set
≺i=≺ ∩ (Ti × Ti). These sets ≺i together consti-
tute the set ≺intra=

⋃n
i=1 ≺i of intra-agent con-

straints, while the remaining set of constraints
≺inter=≺ \ ≺intra constitutes the set of inter-
agent constraints. So each agent Ai now is re-
sponsible for achieving the (complex) subtask
(Ti,≺i) while the agents are dependent upon each
other via the inter-agent constraints ≺inter.

We will not deal with the problem how the task
assignment has been achieved. In fact, this prob-
lem can be discussed separately from the coor-
dination problem and is trivial to solve in our
application case.

In this task-based framework we do not make
any assumptions about the planning tools used
by the agents. Whatever plan/schedule represen-
tation the agents (internally) employ, we assume
that a plan Pi developed by agent Ai for its set
of tasks Ti can always be specified by a structure
Pi = (Ti, πi) that refines the structure (Ti,≺i),
i.e. ≺i ⊆ πi, which means that an agent’s plan
must respect the original precedence relation ≺i,
but his plan may induce additional constraints.

Since the agents are assumed to be competitive,

t1 t3

t4t2

A1 A2

b

t1 t3

t4t2

A1 A2

a

Figure 1. A set of interdependent tasks T =
{t1, t2, t3, t4} and two agents A1 and A2 each as-
signed to a part of T (see a). If agent A1 decides
to make a plan where t2 precedes t1 and A2 makes
a plan where t3 precedes t4 (see b), these plans
cannot be combined.

the following restrictions have to be obeyed in
coordinating their planning activities:

1. during the planning process, the agents are
completely autonomous, i.e., they choose a
plan for their part of the task independently
from the other agents;

2. after planning, the individually constructed
plans can be joined into a joint plan without
the need to revise any individual agent plan.

The following example shows that these require-
ments are not trivially met; here, the agents do
not exchange information about their intended
plans, and the result is that their plans are in con-
flict and cannot be combined without revision.

Example 1 Consider the following simple case:
(see Figure 1) we have two agents A1 and A2 and
four tasks T = {t1, t2, t3, t4}. The precedence re-
lation ≺ is given as ≺= {(t1, t3), (t4, t2)}. Sup-
pose that t1, t2 are assigned to A1 and t3, t4 to
A2. Then A1 has to solve the subtask ({t1, t2}, ∅),
while A2 has to solve ({t3, t4}, ∅). If A1 chooses
a plan where t2 is completed before t1 and A2

chooses a plan where t3 is completed before t4,
there exists no feasible joint plan preserving ≺
and the individual plans, as the combination of
their plans with the inter-agent constraints con-
stitutes a cycle: t1 ≺ t3 ≺ t4 ≺ t2 ≺ t1.

In the above example, the solution is to add
an additional constraint prior to planning, for in-
stance, t1 ≺ t2 to the set of intra-agents con-
straints of agent A1. Then, whatever plans the
agents come up with (respecting their intra-agent
constraints, of course), the results can be com-
bined into an acyclic joint plan.

This addition of constraints constitutes the
essence of our pre-planning coordination method:
prior to planning, we seek a minimal set of addi-
tional, intra-agent (precedence) constraints, such
that any combination of agent plans respect-
ing these constraints can subsequently be com-
bined into a feasible joint plan. It can be easily
shown that such a minimal set ∆ ⊆

⋃n
i=1 Ti × Ti

of intra-agent constraints, called a coordination
set, always exist. In general, however, such sets
are extremely difficult to compute (cf. [10]) and
we have to rely on approximation algorithms to
find non-minimal coordination sets that guaran-
tee revision-free independent planning.3

3. A distributed coordination algorithm to
achieve plan coordination

Since finding and deciding a minimal coordi-
nation set ∆ is too complex to solve in reason-
able time (unless P=NP), in this section we pro-
pose a distributed approximation algorithm for
finding not necessarily minimal coordination sets
with low-polynomial time complexity.

The algorithm is based on the following idea:
we assume that each agent Ai knows whether or
not some task t it has to execute is dependent
upon another task t′ (or that another task t′ de-
pends upon t). If t′ does not belong to its own set
of tasks, both the identity of t′ and the executing
agent Aj are unknown. In constructing a plan for
(Ti,≺i), each agent Ai can safely start to make
a plan for the subset T 1

i ⊆ Ti of tasks that are
not dependent (via inter-agent constraints ≺inter

or via Ai’s own constraints ≺i) upon other tasks.
Such tasks are called prerequisite-free. To deter-
mine whether a given task t in Ti is prerequisite-
free or not, we let the agents use a third party in
the form of a common blackboard. This black-
board stores all dependency relations between
tasks belonging to different agents and, given a

3In general, the problem to find such a set is Σp
2-hard,

even if the agents have a modest number of tasks (8 or
more) to perform.

query t, the blackboard can answer whether or
not a task t depends on another task t′ belong-
ing to another agent. Once each agent Ai has
selected such a prerequisite-free subset T 1

i (which
may be empty), the agent informs the blackboard
that the tasks t in T 1

i can be removed from the
set Ti, together with all precedence constraints in
≺ that involve task t. Then the agents start a
new round where each agent Ai again selects a
subset T 2

i of the set of remaining tasks not de-
pendent on other tasks. These rounds continue
until after, say, k ≤ |T | rounds the set of remain-
ing tasks is empty. As a result, the original task
Ti of agent Ai is partitioned into an ordered set
of k (possibly empty) subsets T 1

i , . . . , T k
i .

Hereafter, the coordination set ∆i for agent Ai

is constructed as follows: first, all empty subsets
T j

i in {T j
i }k

j=1 are removed. Next, for every j =
1, . . . , k − 1 and for every pair of tasks t, t′: if
t ∈ T j

i and t′ ∈ T j+1
i , the precedence constraint

(t, t′) is added to ∆i.
To obtain these sets T j

i , each agent Ai executes
the following algorithmic scheme: In each round

Algorithm 1 Coordination by partitioning
Require: a task (Ti,≺i) for agent Ai

Ensure: a linearly ordered partition
(T 1

i , . . . , T k
i) of Ti

1: let k := 0
2: while Ti 6= ∅ do
3: k := k + 1
4: ask the blackboard for the subset T k

i ⊆ Ti

of tasks that are prerequisite-free,
5: if T k

i 6= ∅ then
6: Let Ti = Ti − T k

i

7: Send the set T k
i to the blackboard

8: else
9: k := k − 1

10: end if
11: end while
12: return (T 1

i , . . . , T k
i)

of the algorithm, agent Ai splits off a (possibly
empty) set of tasks T k

i from Ti. In Step 4, agent
Ai asks the blackboard to compute the set T k

i of
tasks in Ti that are free of prerequisites.

The worst-case performance of the
coordination-by-partitioning algorithm, mea-

sured in terms of the cost of the resulting plan,
is bounded by the maximum number of rounds
the agents need to complete the coordination
algorithm. For, suppose an agent Ai splits his
set of tasks Ti into k segments T 1

i , . . . , T k
i , then

the cost of the combined plan for all k segments
can be at most k times as high as the cost of
a plan for his unconstrained set of tasks Ti. As
an example, consider the case where an agent
only has two tasks t1 and t2. If there exists no
precedence constraint between t1 and t2, then we
might imagine that an agent can execute both
tasks in parallel. By introducing the constraint
t1 ≺ t2, the tasks can no longer be executed in
parallel, so the cost of the plan may increase —
but with no more than the cost of the original
plan, since at most all work done on t1 must be
redone for t2. It is easy to see that the maxi-
mum value of k (the number of rounds) for any
agent is bounded above by the depth d (i.e., the
length of the longest chain) of the composite task
T = (T,≺). Therefore, preferably, this algorithm
might be used in those cases where the depth of
the complex task is relatively small compared to
the number of tasks, such as e.g. in multimodal
transportation.

Considering the time complexity of the algo-
rithm, for every value of k an agent does not
need to spend more than O(|Ti|)-time to find a
prerequisite-free subset and to update the set of
current tasks. Hence, since k ≤ |T |, the total
time each agent needs to find its partitioning is
O(|T |2).

4. Application to logistic planning

To illustrate the practical use of our approach,
we apply the coordination algorithm as a pre-
planning coordination approach to a logistic plan-
ning problem used in the AIPS2000 planning
competition. Before we discuss the results, we
will define this logistic planning problem and
analyse its complexity into some detail.

4.1. Logistic planning problems
The logistic planning problem we have in mind

consists of a set Loc of locations loci,j where
i = 1, 2, . . . ,m and j = 1, 2, . . . n. A city ci is
a subset ci = {loci,j | j = 1, . . . , n} of locations,
where each location can be visited by a truck.
In each city ci we distinguish a special location

loci,1 as the airport of city ci. All airports are
connected by directed flights and are visited by
airplanes. There is also a set of orders o = (l, l′)
for picking up and delivering packages, consisting
of a pick-up location l ∈ Loc and a delivery lo-
cation l′ ∈ Loc. Let O denote the set of orders
given. We distinguish intra-city orders and in-
tercity orders. An intra-city order requires a load
action at the pick-up location, a move action and
an unload action at the destination location. So
the cost of an intra-city order is minimally 3 ac-
tions. For an inter-city order, we distinguish a
pre-order phase, a plane-phase and a post-order
phase. In the pre-order phase, an intra-city or-
der is carried out by transporting the package to
the airport of the pick-up city, during the plane-
phase, the package is transported to the desti-
nation airport and finally in the post-order phase
the package is transported from the airport to the
final destination. So an inter-city transportation
might require at least 6 load/unload actions and
at least 3 move actions. We use a simple uniform
cost model where every load, unload and move
action has unit cost. Hence, the cost of a plan
simply equals the number of actions it contains.

Given an instance (Loc,O) of this logistic plan-
ning problem we are looking for a plan P that car-
ries out all orders in O. Such a plan is a sequence
of load/unload and move actions completing all
the orders in O. The cost of P , denoted by |P |, is
the sum of the cost of all actions occurring in P
and of course, we would like to obtain an optimal
plan P ∗, i.e. a plan with minimum cost4.

4.2. A preplanning coordination approach to the
logistic planning problem

Note that an instance (Loc,O) of the logis-
tic planning problem can be easily translated to
an instance of a multi-agent planning problem:
Every inter-city order oj consists of a linearly
ordered sequence of (at most) three elementary
tasks tj1 ≺ tj2 ≺ tj3, where tj1 is the task of
transporting the package from its pickup location
to the airport by the truck agent in the pick-up
city, tj2 is the plane task of transporting the pack-
age to the airport of the destination city and fi-
nally tj3 is a truck task consisting in transporting
the package to its destination location. Note that
the task assignment is trivial here: intra-city or-
ders are assigned to the truck agents, inter-city
4Note that we are not looking for a minimum time plan.

orders to the plane agents. Also note that there
are no precedence constraints within the set of
orders assigned to a particular agent, so all prece-
dence constraints are inter-agent constraints.

It is easy to see that a feasible joint solution
is not guaranteed if the agents plan completely
independently from each other. Therefore, we
apply our approximation algorithm to ensure in-
dependent planning. Note that here the depth
of the partial order is 3 (a pre-transportation
order followed by a plane order followed by a
post-transportation order). Hence the number
of rounds equals at most 3. Applying the dis-
tributed approximation algorithm 1, it is easy to
see that:

1. in the first round, all truck agent select their
local transportation orders together with all
their pre-transportation orders;

2. in the second round, only the plane agents
select all their (plane) orders;

3. in the third round, only truck agents select
all their post-transportation orders.

This implies that only the truck agents will re-
ceive additional constraints: per city, the local
truck agents have to make a plan for the lo-
cal, the pre-transportation orders and the post-
transportation orders in their city. Their trans-
portation plan, however has to satisfy the ad-
ditional constraints that every local and pre-
transportation order should precede any post-
transportation order in the plan (Equivalently,
they can be asked to make two plans: one for
the combined local and pre-transportation orders
and one for the post-transportation orders). The
planes have to make a plane plan for the plane
orders.

Now it is easy to see that the plans of the plane
agent and the truck agents can be easily com-
bined into a joint plan, in such a way that (i)
all pre- and local transportation plans are com-
bined; (ii) all actions in the local plans for pre-
and local transportation precede the actions in
the plane plan, (iii) all post-transportation plans
are combined and (iv) all actions in the plane
plan precede the actions in the combined post-
transportation plans. It is easy to verify that the
plan thus composed indeed is a solution to the
original problem.

Surprisingly, this simple coordination ap-
proach, theoretically as well as experimentally, is
one of the best coordination methods we can find
for this logistic planning problem. In order to
evaluate the overall performance of the method,
we first concentrate on the single agent (truck and
plane agent) planning problems and their solu-
tion.

4.3. Finding solutions to the local planning prob-
lems

Let Loc = {loc1, loc2, . . . , locn} be a set of lo-
cations in a given city (or a set of airports) and
let O ⊆ Loc×Loc a set of pickup-delivery orders
over Loc. We assume that all locations are di-
rectly connected and the cost to travel from ci to
cj is the same (equal to 1) for all i 6= j. We would
like to construct a sequence S over Loc such that
all pickup-delivery orders can be carried out by
visiting the locations in the order indicated by S.
Such a visiting sequence S is a sequence over Loc
with possible repetitions. An order (l, l′) ∈ O can
be fulfilled by S if there exists sequences α, β, γ
over Loc such that S = αlβl′γ, i.e. S contains
an occurrence of l before an occurrence of l′. A
visiting sequence S over Loc is a solution to the
instance (Loc,O) if every order in O can be ful-
filled by S.

To find an optimal solution requires us to find
a solution of minimal length. This minimal visit-
ing sequence problem is an NP-hard problem (See
Appendix, subsection A.1).

Consider now the following simple approxima-
tion algorithm to construct a visiting sequence
satisfying the orders O, given the locations Loc
and the set O:

Stage 0
Let O = {oi}m

i=1 and let S be empty;

Stage i (i ≥ 1)
Let oi = (l, l′) and let the current visiting
sequence be S;
if both l an l′ do not occur in S, add (l, l′)
to the end of S; if only l occurs in S and l′

does not occur in S, add l′ to the end of S;
if only l′ does occur in S, add l to the front
of S; if both l and l′ occur in S then add l′

to the end of S only if ll′ does not occur as
a (scattered) subsequence of S;
If i < n goto stage i + 1, else stop.

It is not difficult to show that this (polynomial)

algorithm achieves an approximation bound ε =
2. The remarkable news is that, for the time be-
ing, we cannot do better than this: It is known [6]
that the Minimum Directed Feedback Vertex Set
(MDFVS) problem is an APX-hard problem5 and
until now, the best known approximation algo-
rithm guarantees an O(log n log log n)-factor ap-
proximation, that is, until now it has not been
shown that the problem is in APX. The follow-
ing proposition shows that finding a polynomial
(2− ε)-approximation algorithm for finding min-
imal visiting sequences would immediately imply
that the MDFVS-problem is in APX:

Proposition 1 Let δ > 1 be an arbitrary con-
stant. The MDFVS-problem is δ-approximable iff
the minimum visiting sequence problem is (2 −

2
δ+1)-approximable.

Proof See Appendix.

Note that whenever δ = δ(n) is not bounded
above by some constant, it follows that sup{2 −

2
δ(n)+1} = 2. Hence, we have:

Corollary 1 The MDFVS-problem is in APX iff
the local planning problem is ε-approximable for
some ε < 2.

Since, as we remarked, the best know approx-
imation algorithm for directed minimum vertex
feedback set achieves an approximation ratio
O(log n log log n), the best known approximation
bound for finding a minimal visiting sequence
therefore is ε = 2.

4.4. An approximation based on the coordination
approach

To make a comparison with the MDFVS-
problem, we used a visiting sequence S as a so-
lution to the local planning problem (Loc,O).
Such a visiting sequence, of course, can be eas-
ily translated into a plan P for the local planning
problem: If S is the visiting sequence solution,
the cost |P | of the corresponding transportation
plan P is (taking into account one additional load
and unload action per action, each of unit cost):
|P | = 2.|O|+ |S|. Let |Loc| = n and |O| = m and
5An optimization problem is an APX-problem if it has a
polynomial c-approximation algorithm for some constant
c ≥ 1.

assume that every location l ∈ Loc occurs in at
least one order o ∈ O. Therefore, m ≥ n. Since
the length of S is at most 2n and at most 2 times
the length of the optimal visiting sequence S∗,
with |S∗| ≥ n, it follows that the performance
ratio, i.e. the cost of the local plan thus deter-
mined versus the cost of the optimal local plan
P ∗, is bounded above by

|P |
|P ∗|

=
2.|O|+ |S|
2.|O|+ |S∗|

≤ 2m + 2n

2m + n
≤ 2m + 2m

2m + m
= 4/3.

We can slightly improve this upperbound by ob-
serving that m ≥ |S| should hold since, according
to the approximation algorithm for constructing
visiting sequences, every location l that occurs
twice in S is the result of adding at least two or-
ders, one in which l occurs as source and one as
a destination. Hence, there must be at least two
orders for each such an occurrence. Therefore,
using the inequalities m ≥ |S| and |S| ≤ 2n, we
achieve

|P |
|P ∗|

≤ 2m + |S|
2m + n

≤ 2|S|+ |S|
2|S|+ 0.5|S|

= 1.2

Note that local planning problems constitute
special cases (restrictions) of the complete multi-
actor logistic planning problem we want to solve.
Therefore, the following result is an immediate
consequence of the preceding observations and
shows that currently the best we can hope for is
an approximation algorithm for the total logistic
planning problem that achieves ε = 1.2:

Theorem 1 There exists no polynomial ε-
approximation algorithm with ε < 1.2 for the
multi-actor logistic planning problem as defined
unless the MDFVS-problem is in APX.

Now we show that our coordination approach
performs remarkably well with respect to this
“lowerbound”: if we use the coordination ap-
proach and the approximation algorithm for find-
ing minimal visiting sequences as discussed above
to solve the local planning problems, we obtain
an approximation algorithm for the total plan-
ning problem with a performance ratio that is
only slightly worse: ε = 1.25 instead of the lower-
bound 1.2:

Proposition 2 The multi-actor logistic planning
problem is 1.25-approximable.

Proof See Appendix.

Example 2 To show that this upper bound can
be achieved, we present a set of tight examples.
Consider problem instances with n + 1 cities and
n + 1 locations per city. The set of orders is

O = {(loc1,1, loc1,j), (loc1,j , loc1,1)| j = 2, . . . , n + 1}
∪{(locj,1, loc1,k)| j = 2, . . . , n + 1, k = 2, . . . , n + 1}
∪{(loc1,1, locj,1)| j = 2, . . . , n + 1, k = 2, . . . , n + 1}

The total number of load/unload actions equals
4n+4n+2n, while the number of moves in a plan
is 2n + 1 + 2n + 1 + n and the optimal number of
moves equals 2n + 2. Therefore, the performance
ratio equals limn→∞

15n+2
12n+2 = 1.25.

Note that the drop in approximation quality
between solving only the local problems and solv-
ing the total planning problem has to be at-
tributed to the additional overhead caused by co-
ordinating the local plans.

5. Experimental results

The performance results obtained in the pre-
vious sections are theoretical and worst-case
results. In order to test and to compare our
coordination approach with other planning ap-
proaches to the logistic problem, in this section
we will show some results using a benchmark
set for general planners. With this compari-
son we want to show two things: First of all,
the average performance of our coordination ap-
proach is much better than should be expected,
if the worst-case performance ratio is taken as
the norm. Secondly, the coordination approach
can be used to enhance the planning power of
existing planners significantly, thereby showing
that it enables single agent planning technology
to be used for multi-agent problems.

In the Artificial Intelligence Planning and
Scheduling (AIPS) competition of the year 2000,
several general-purpose planning systems com-
peted in a number of planning domains. The
logistic planning problem as described in Sec-
tion 4.1 was one of the domains featured. We
have used the AIPS logistics dataset in our exper-
iments because of its status as benchmark prob-
lem set, and also because it allows us to compare
our decomposition-by-coordination approach to a
selection of centralized planning systems.

In Table 1, we compare plan cost (in terms of
the number of moves in a plan) for four plan-
ners. In the second column the costs of the op-
timal plans are given as calculated by encoding
the complete instance as an ILP-problem and
solving it exactly (of course not taking into ac-
count the time needed to find a solution); the
third column represents the cost of the plans
produced using the coordination approach; the
fourth, fifth, and sixth columns represent a se-
lection of the planning systems competing in the
AIPS: the competition-winning TALplanner [11],
and the above-average performers STAN [13] and
HSP2 [1]. Each row in Table 1 represents an in-
stance in the dataset, characterized by the num-
ber of packages that have to be transported for
that instance. Of the roughly 200 instances in the
dataset, we have made a random selection of 12.

It will come as no surprise that the results pro-
duced using the coordination approach, especially
since the local plans in fact were solved exactly,
deviate little from the optimal plans — on aver-
age less than 5%. These results are significantly
better than what would be expected (25%) based
on the worst-case performance ratio of 1.25.

The plans produced by the coordination ap-
proach are comparable in quality with the plans
produced by STAN (only 2% deviating from the
optimum) and TALplanner (about 7%). To il-
lustrate that for some solvers the problems in
the AIPS dataset are far from trivial, HSP2 does
not manage to solve (within reasonable time and
memory constraints) any instances where more
than 40 packages have to be transported and pro-
duces significantly worse plans (about 44% devi-
ating from the optimum). The cpu-times needed
to produce the plans by the coordination ap-
proach were a few seconds for each of the planning
instances occurring in Table 1.

As we remarked before, the coordination ap-
proach cannot only be used to solve multi-
agent planning problems using simpler single-
agent planning tools; we can also apply it as a
pre-processing step for a given planning system
that has trouble solving such multi-agent plan-
ning problems. The idea is that the problem in-
stance then can be decomposed into smaller sub-
problems that can be solved independently by the
planning system, whereafter the solutions to the
subproblems can be simply combined into a solu-
tion to the whole problem instance.

nr packages min nr moves Coordination TALplanner STAN HSP2
20 107 113 111 110 145
25 143 150 152 149 206
30 175 182 183 177 250
35 177 181 186 182 264
40 228 239 239 232 337
45 269 284 285 276 –
50 286 299 306 293 –
55 319 327 338 326 –
60 369 391 398 376 –
65 371 387 397 382 –
70 405 426 437 416 –
75 438 458 471 448 –

Table 1
Results for 12 randomly chosen instances from the AIPS00 logistics dataset. For each instance the
minimum number of moves is determined and for each planner the number of moves produced is given

Specifically, what we propose is the following
method: using the coordination approach, de-
compose a multi-agent logistics instance into a
set of single-agent planning problems. Then, feed
each of the single-agent planning subproblems to
the planning system, and combine the results
(plans) according to the protocol into an over-
all plan, thereby solving the complete multi-actor
instance. What we would like to see using this
method is significant savings in computation time
without significant loss in plan quality compared
to the use of the planner solving the complete in-
stance. For this experiment we chose STAN (since
it produced almost optimal plans for the complete
instance) and HSP-2 (since it consumed a lot of
cpu time).

To test these expectations, we randomly se-
lected 51 problems from the AIPS00 planning
dataset and observed both the reduction in cpu-
time and the reduction in plan cost comparing a
solution produced by using only the planner with
a solution by using the planner in combination
with the coordination approach. The results are
given in Figure 2.

It can be observed that both STAN and HSP2
definitely benefit from pre-processing by the coor-
dination approach: both planning systems regu-
larly achieve savings in computation time of over
80%. In addition, we can see that HSP2 pro-
duces plans that are on average 20% cheaper, i.e.,
requiring 20% less actions. Also note that the
plan cost for STAN does not increase significantly

when using the coordination approach. Finally, it
can be observed that even after a decomposition
into smaller subproblems for quite some instances
HSP-2 again was not able to produce a solution
within reasonable time. This means that even for
the local planning problems HSP-2 still has con-
siderable difficulty in solving them.

6. Conclusion

We discussed a task-based planning framework
and its application to a logistic planning prob-
lem. We illustrated the framework with an ap-
plication to a logistic planning problem used in
the AIPS00-planning competition and we showed
that there exists a very simple coordination proto-
col derived from the general framework for multi-
agent planning that enables us to decompose the
planning problem into simpler subproblems that
can be solved independently. This coordination
by decomposition approach does not result in in-
efficient plans when compared to a theoretically
optimal centralized planning system. Rather, a
centralized planning system will typically have
trouble finding a solution for the entire multi-
agent instance at once. Consequently, our ap-
proach, where each agent can make a plan inde-
pendently of the other agents, will result in more
efficient plans.

Our current framework does not address is-
sues of temporal constraints in multi-agent plan-
ning. Future work will concentrate on coordi-
nation methods for temporal planning systems,

-20%

0%

20%

40%

60%

80%

100%

1 6 11 16 21 26 31 36 41 46 51

problem

sa
vi

ng
s

STAN time STAN #steps HSP time HSP #steps

Figure 2. Savings in CPU times and plan cost (#steps) when STAN and HSP2 make use of the coordi-
nation approach as a pre-processing step.

building upon approaches like [8] to decouple
temporal planning problems.

References

1. B. Bonet and H. Geffner. Heuristic search
planner 2.0. AI Magazine, 22(3):77–80, Fall
2001.

2. J.S. Cox and E. H. Durfee. Discovering and
exploiting synergy between hierarchical plan-
ning agents. In Second International Joint
Conference On Autonomous Agents and Mul-
tiagent Systems (AAMAS ’03), 2003.

3. K. S. Decker and V. R. Lesser. Design-
ing a family of coordination algorithms. In
Proceedings of the Thirteenth International
Workshop on Distributed Artificial Intelli-
gence (DAI-94), pages 65–84, 1994.

4. E. H. Durfee and V. R. Lesser. Partial global
planning: a coordination framework for dis-
tributed hypothesis formation. IEEE Trans-
actions on systems, Man, and Cybernetics,
21(5):1167–1183, 1991.

5. E. Ephrati and J. S. Rosenschein. Multi-
agent planning as the process of merg-
ing distributed sub-plans. In Proceedings
of the Twelfth International Workshop on
Distributed Artificial Intelligence (DAI-93),

pages 115–129, 1993.
6. P. Festa, P. Pardalos, and M. Resende. Feed-

back set problems, 1999.
7. D.E. Foulser, Ming Li, and Qiang Yang. The-

ory and algorithms for plan merging. Arificial
Intelligence, 57(2–3):143–182, 1992.

8. Luke Hunsberger. Algorithms for a temporal
decoupling problem in multi-agent planning.
In Proceedings AAAI/IAAI, pages 468–475,
2002.

9. N. R. Jennings. Commitments and con-
ventions: The foundation of coordination in
multi-agent systems. The Knowledge Engi-
neering Review, 8(3):223–250, 1993.

10. M.M. de Weerdt J.M.Valk and C. Witteveen.
Algorithms for coordination in multi-agent
planning. I. Vlahavas and D. Vrakas (ed.),
Intelligent Techniques for Planning (to ap-
pear), 2004.

11. J. Kvarnström and P. Doherty. Talplanner:
A temporal logic based forward chaining plan-
ner. Annals of Mathematics and Artificial In-
telligence, 30(1-4):119–169, 2000.

12. V. Lesser, K. Decker, T. Wagner, N. Carver,
A. Garvey, B. Horling, D. Neiman, R. Podor-
ozhny, M. NagendraPrasad, A. Raja, R. Vin-
cent, P. Xuan, and X.Q. Zhang. Evolution

of the GPGP/TAEMS Domain-Independent
Coordination Framework. Autonomous
Agents and Multi-Agent Systems, 9(1):87–
143, July 2004.

13. D. Long and M. Fox. Efficient implementa-
tion of the plan graph in stan. Journal of AI
Research, 10:87–115, 1999.

14. F. Von Martial. Coordinating Plans of Au-
tonomous Agents, volume 610 of Lecture
Notes on Artificial Intelligence. Springer Ver-
lag, Berlin, 1992.

15. Y. Moses and M. Tennenholtz. On computa-
tional aspects of artificial social systems. In
Proceedings of DAI-92, 1992.

16. Y. Shoham and M. Tennenholtz. On social
laws for artificial agent societies: Off-line de-
sign. Artificial Intelligence, 73(1–2):231–252,
1995.

A. Appendix

A.1. The minimal visiting sequence problem is
NP-hard

Proposition 3 Let G = (V,A) be an instance
of the minimum directed feedback vertex set
(MDFVS) problem. Then S is a minimum
visiting sequence solving the instance (Loc,O),
where Loc = V and O = A, iff F = {v ∈
V | v occurs twice in S } is a minimum feedback
vertex set of G.

Proof Without loss of generality we may as-
sume that G does not contain isolated nodes.
Let S ∈ V ∗ be a minimum solution to
(Loc,O) = (V,A) and consider F = {v ∈
S | v occurs twice in S}. Observe that, by as-
sumption, every node of V occurs in at least one
pair (v, v′) of A, every location v occurs at least
once in S.

1. F is a feedback vertex set of G. Let C =
(v0, v1, . . . vk, v0) be a directed cycle in G =
(V,A). We show that for at least one vi ∈
C, vi ∈ F . On the contrary, assume that
for no i ∈ {0, 1, . . . , k}, vi occurs twice in
S. For i = 0, 1, . . . k, let ji be the (unique)
index of vi in S. Hence, there exists a total
ordering ji0 < ji1 < . . . < jik

of these index
positions in S. But this implies that the
order (vk, v0) ∈ A, requiring that S should
contain an occurrence of vk occurring before
an occurrence of v0; contradiction.

2. F is a minimum feedback vertex set. If F is
not a minimum feedback vertex set, there
exists another subset F ′ of V with |F ′| <
|F | such that F ′ intersects every cycle of
G. But then it is easy to see that S is not
a minimum solution: Let A′ = {(v, v′) ∈
A | v′ 6∈ F ′} and take the instance (V,A′).
Clearly, since G′ = (V,A′) is acyclic, there
exists a topological ordering T of nodes in V
respecting A′. Now let S′ = T.F ′. It is easy
to show that S′ is a solution to (V,A): take
an order (v, v′) ∈ A. If (v, v′) ∈ A, T and
therefore S′ is a sequence satisfying (v, v′).
If (v, v′) 6∈ A, v occurs in T and v′ occurs in
F , hence S′ satisfies (V,A). Therefore, S′

is a smaller solution than S; contradiction.
Hence, F is a minimum feedback vertex set.

A.2. Proof of Proposition 2
(⇒) Assume that the MDFVS-problem is δ-

approximable for some δ > 1. We derive a
2 − 2

δ+1 -approximation algorithm for the mini-
mum visiting sequence problem as follows: (i)
Given an instance (Loc,O) of the minimum visit-
ing sequence problem, find an approximable mini-
mum feedback vertex set F for the directed graph
G = (Loc,O). (ii) Determine in time O(|Loc| +
|O′|) a topological ordering S′ of Loc compatible
with the partial order O′ = {(l, l′) ∈ O | l′ 6∈ F}
and let S = S′. <F > where <F > is an arbitrary
ordering of the locations l occurring F . Clearly,
S is a solution of (Loc,O) and the performance
ratio of this approximation algorithm equals:

|S|
|S∗|

=
|Loc|+ |F |
|Loc|+ |F ∗|

≤ |Loc|+ δ × |F ∗|
|Loc|+ |F ∗|

where F ∗ denotes the optimal solution, i.e. a min-
imum feedback vertex set of G = (Loc,O). Note
that |F ∗| ≤ |Loc|. Hence, this ratio is bounded
above by

|Loc|+ |Loc|
|Loc|+ |Loc|

δ

= 2× δ

δ + 1
= 2− 2

δ + 1

(⇐) Conversely, assume that the order routing
problem is ε = 2− 2

δ+1 approximable for some δ >
1. We prove that MDFVS has a δ-approximation
algorithm.

Let G = (V,A) be an instance of the MDFVS-
problem. Consider the instance (Loc,O) with

Loc = V and O = A of the order routing prob-
lem. Let S be a solution found by the approx-
imation algorithm for the order routing prob-
lem and let S∗ be an optimal solution to the
instance. Without loss of generality we can as-
sume that no vertex l occurs more than twice
in S. Let F ∗ = {v|v occurs twice in S∗ } and
F = {v|v occurs twice in S}. We know that both
F and F ∗ are feedback vertex sets and that F ∗ is
a minimum feedback vertex set of G.

Note that for all instances6 I, |SI |
|S∗

I |
= |V |+|F |

|V |+|F∗| ≤
2− 2

δ+1 . Let f : N → N be a bounding function
such that for all instances such that |F ∗| = n,
|F | ≤ f(n)× n. We will show that f(n) ≤ δ.

Let |V | = m and |F ∗| = n. Then we have:

m + |F |
m + n

≤ m + |F |
m + |F |

f(n)

≤ 2− 2
δ + 1

where |F | ≤ m. The left-hand side is maximized
choosing |F | = m. Hence,

2m

m + m
f(n)

=
2

1 + 1
δ

≤ 2− 2
δ + 1

implying that f(n) ≤ δ.

A.3. Proof of Proposition 3
To determine this performance ratio, let m̂0

pre,
m̂0

plane, m̂0
post denote the number of moves found

using the local approximation algorithms for the
pre-transportation and the plane transportation
phase and the post transport phase, respectively.
Note that the number of moves equal the length
of the visiting sequence found by the algorithm.
We note that m̂0

post = m0
post is optimal, since

this number of moves can be determined exactly
(the local problem to be solved is the problem
of finding a visiting sequence in an acyclic or-
der graph, and this problem is polynomially solv-
able). For the remaining number of moves we
have m̂0

pre ≤ 2m0
pre and m̂0

plane ≤ 2m0
plane. Here,

the right- hand side variables denote the optimal
number of moves in the pre-transportation, the
plane and the post-transportation plan, respec-
tively. The same holds for the remaining vari-
ables. We will use these numbers to relate them
to the number of load/unload actions that have
been executed.

6Without loss of generality we may assume that G does
not contain isolated points.

Take, for example, m̂0
pre (the case for m̂0

plane is
analogous). Let m̂0

pre = m+2k where m+k = n,
n is the total number of locations and k the num-
ber of locations occurring twice in the visiting
sequence found. This immediately implies that
the number of orders to be executed in the lo-
cal plan must have been at least (m − 1) + 2k.
Therefore, the number of load/unload actions
must be l0pre = 2(m − 1 + 2k) and the total
cost of the pre-transportation plans must equal
l0pre+m̂0

pre = 2(m−1+2k)+m+2k = 3m+6k−2
Analogously, we have the following relationships:
the number of load /unload actions for the plane
equals l0plane = 2(m′−1+2k′) if m̂0

plane = m′+2k′.
Hence, l0plane + m̂0

plane = 3m′ + 6k′ − 2.
Hence, denoting the plan as computed by p̂0,

we derive

|p̂0|
|p∗|

=
l0 + m̂0

p∗

=
l0 + m̂0

pre + m̂0
plane + m0

post

p∗

≤
3m + 6k − 2 + 3m′ + 6k′ − 2 + l0post + m0

post

3m + 5k − 2 + 3m′ + 5k′ − 2 + l0post

Note that m0
post equals the number of (desti-

nation) locations mentioned in the post plan-
ning part. The right-hand side is maximized if
m0

post = m + k = k = n and m′ + k′ = k′ = n.
Since in that case we also have l0post = 2n, we
derive

|p̂0|
|p∗|

≤ 15n− 4
12n− 4

≤ 5
4

= 1.25.

